2017 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT COAL COMBUSTION RESIDUALS (CCR) RULE

MARION POWER PLANT WILLIAMSON COUNTY, ILLINOIS

Prepared for:

Southern Illinois Power Cooperative 11543 Lake of Egypt Road Marion, Illinois

January 2018

CONTENTS

Section

Page

1.0	INTRO	DDUCTION	1
	1.1	Site Background	
2.0	2016 -	– 2017 ACTIVITIES SUMMARY	
	2.1	Certified Monitoring Well System	
	2.2	Baseline Sampling	2
	2.3	Detection Monitoring Error! Bookmark not d	
	2.4	Statistical Method Certification	
3.0	DATA	EVALUATION	2
	3.1	Monitoring Well System	2
	3.2	Groundwater Flow	2
	3.3	Sampling Results	3
	3.3.1	Baseline Sampling	3
	3.3.2	Detection Monitoring Error! Bookmark not d	lefined.
	3.4	Statistical Evaluation	
	3.5	Discussion and Conclusions	3
4.0	GENE	RAL INFORMATION	3
	4.1	Problems Encountered and Resolutions	
	4.2	Actions Planned for 2018	4
5.0	REFE	RENCES	5

Table List

Table 1	Summary of Monitoring Well Construction
Table 2	Analytical Summary Table
Table 3	Groundwater Elevations
Table 4	Groundwater Flow Rates

List of Figures

Figure 1	General Location Map
Figure 2	Well Location Map

List of Appendices

- Appendix A Monitoring Well Construction Logs
- Appendix B Groundwater Flow Maps

1.0 INTRODUCTION

At the request of Southern Illinois Power Cooperative (SIPC), AECOM Technical Services, Inc. (AECOM) prepared this 2017 Annual Groundwater Monitoring and Corrective Action Report for the SIPC Marion Power Plant (Marion Plant), located near in Marion, Illinois in accordance with the United States Environmental Protection Agency (USEPA) Final Rule 40 Code of Federal Regulations (CFR), Part 257.90. Sub-Part (e) (Rule). The Rule was established to regulate the disposal of Coal Combustion Residuals (CCR) produced by electricity generating facilities (USEPA, 2015).

This report summarizes all activities related to the CCR Rule groundwater monitoring program at the Marion Plant through 2017. The following sections present a site background summary, a discussion of field activities performed, a summary of laboratory results, statistical evaluation findings, and conclusions regarding groundwater conditions in the aquifer system subject to monitoring under the CCR Rule.

1.1 Site Background

The Marion Plant is situated on the northwestern shoreline of the Lake of Egypt, south of the town of Marion, Illinois. SIPC developed the 2300 acre lake for cooling water by damming the south fork of the Saline River. The Marion Plant is a coal-fired power plant and has been in operation since 1963. A general location map of the site is provided as **Figure 1**.

There is one settling pond on-site that has been identified as a potential surface impoundment subject to the CCR Rule. CCRs managed in the pond are generated from the, precipitator, boiler, scrubber and air heater washes during plant outages.

The impoundment is approximately 1.1 acres in size and approximately 8-feet deep.

2.0 2016 – 2017 ACTIVITIES SUMMARY

The following subsections describe the activities that were performed in 2017 for the Marion Plant related to the CCR Groundwater Monitoring Network.

2.1 Certified Monitoring Well System

Five monitoring wells were installed between February 7, 2017 and February 8, 2017 by Holcomb Engineering. AECOM was present onsite during well installation activities. A complete report of the well installation and details about the monitoring network are available in the Draft Monitoring Well Installation Report, *Coal Combustion Residuals Rule, Marion Power Station, Williamson County, Illinois* dated September 28, 2017.

Monitoring well locations are shown on **Figure 2**. Each well was installed into the upper portion of the uppermost aquifer underlying the site. At the Marion Plant, the uppermost aquifer is a shallow, hydraulically "perched" zone comprised of fill and residuum (silts and clays) from the weathering of bedrock, and is not considered a useable water source. Bedrock in the vicinity of the site consists of interbedded sandstone and shale, with minor amounts of limestone. This uppermost aquifer is marginal at best because of its shallow depth and contact with fill material. It was selected for monitoring because the geologic setting and local well records suggest there is no deeper usable aquifer below the site. **Table 1** contains information regarding well locations and construction details. Well lithologic and construction logs are included as **Appendix A**.

The CCR monitoring network at the Marion Plant was reviewed and certified by a Professional Engineer as required by 40 Code of Federal Regulations (CFR) § 257.91(e)(1). A copy of the Groundwater Monitoring System Certification document will be made available on the public website for CCR Activities maintained by SIPC.

2.2 Baseline Groundwater Sampling

Eight Baseline groundwater sampling events were conducted at the Marion Plant between March 2017 and October 2017. The following table summarizes the dates of each of the sampling events for the baseline period and the wells included in the events.

Event Type	Sampling Event	Dates	Wells Sampled
	1	March 24, 2017	
	2	April 24, 2017	
Desellers	3	May 25, 2017	
Baseline Groundwater	4	June 22, 2017	EBG, EP-1, EP-2, EP-3, and EP-4
Sampling	5	June 29, 2017	EBG, EF-1, EF-2, EF-3, allu EF-4
Gamping	6	July 24, 2017	
	7	August 3, 2017	
	8	August 31, 2017	

Monitoring wells were sampled by evacuating the wells and allowing groundwater recharge before sample collection. All wells were sampled for Appendix III and Appendix IV parameters in accordance with 40 CFR § 257.93. Results from the eight baseline events are summarized in **Table 2**.

2.4 Statistical Method Certification

As required by 40 CFR § 257.93(f)(6) a statistical program for evaluating statistically significant increases (SSI) over baseline levels is currently under development. The Statistical Methods Certification document details the selected method and will be made available on the public website for CCR Activities maintained by SIPC.

3.0 DATA EVALUATION

The following sections present details about the monitoring system, groundwater flow, groundwater sampling results, and statistical evaluation for the Marion Plant well network and datasets.

3.1 Monitoring Well System

The CCR monitoring well system at the Marion Plant contains one background monitoring well and four downgradient monitoring wells. Their locations are shown in **Figure 2**. Construction details for these monitoring wells are available in **Table 1**.

3.2 Groundwater Flow

Monitoring wells were gauged prior to collecting a sample at each well. A potentiometric surface map was created to confirm groundwater flow direction. A summary of groundwater measured elevations is included in **Table 3** and groundwater flow maps for each event are included in **Appendix B**.

Generally, groundwater flow in the vicinity of Emery Pond is to the northeast. In the fifth through eighth sampling events groundwater flow shifted to the more easterly flow path.

Groundwater flow rate (i.e., velocity) estimates were calculated using the groundwater flow maps, estimated hydraulic conductivity and porosity values from nearby monitoring wells. Estimated groundwater velocities range from 0.0014 to 0.003 feet per day. These upper and lower range values are based on estimated hydraulic characteristics from a nearby monitoring well, which is located to the

southwest of the Emery Pond Impoundment. **Table 4** contains groundwater flow rate calculations for each of the baseline sampling events.

3.3 Sampling Results

During 2017 a total of eight Baseline Monitoring events were completed. Discussion of the results from these sampling activities is presented in the following subsections.

3.3.1 Baseline Sampling

During the Baseline Sampling period, all wells were sampled for Appendix III and Appendix IV parameter lists. Constituents from both parameter lists were detected in all of the monitoring wells in all groundwater sampling events conducted. Analytical results from the Baseline Sampling are displayed in **Table 2**.

3.4 Statistical Evaluation

The first Detection Monitoring event for the Emery Pond was not complete as of the time of this annual report preparation. In the interim, a statistical evaluation using the Baseline dataset was conducted to identify any SSIs for the Appendix III parameters. The eighth baseline event data were compared to the previous seven events, which were considered the "baseline" data. Statistical methods were chosen in accordance with 40 CFR § 257.93(f)(1). Monitoring wells were evaluated using an interwell approach with monitoring well EBG used for background comparison. The well is located roughly upgradient of the Emery Pond surface impoundment. Rationale behind why each method was selected is outlined in *Statistical Methods Certification Document*. This document is under final development as of the preparation of this annual report. A copy of this document will be made available on the public website for CCR Activities maintained by SIPC.

Constituents with SSIs identified through the eight Baseline Monitoring events include:

- Boron, calcium, pH, sulfate and total dissolved solids (TDS) in EP-1
- Boron, calcium, sulfate and TDS in EP-2
- Calcium, chloride, sulfate, and TDS in EP-3
- Boron, calcium, chloride, sulfate, and TDS in EP-4

All SSIs are highlighted in Table 2.

3.5 Discussion and Conclusions

SIPC is preparing to conduct Detection Monitoring sampling in early 2018 for the Appendix III constituents at the monitoring wells listed in Section 2.2 above. Upon receipt of results from the confirmation sampling, SIPC will repeat the statistical evaluation tasks to determine if Assessment Monitoring is required.

4.0 GENERAL INFORMATION

The following sections summarize any problems encountered in the CCR program through 2017, any resolutions to those problems if needed and upcoming actions planned for 2018.

4.1 **Problems Encountered and Resolutions**

No problems were encountered during the 2017 reporting period.

4.2 Actions Planned for 2018

SIPC plans on performing semiannual Detection Monitoring sampling for Appendix III parameters at all monitoring wells prior to April 2018. Upon receiving the results of the detection monitoring event, an addition statistical evaluation will be completed. Based on the analytical results and updated statistical evaluation, the need for alternate source demonstration activities or corrective action evaluation will be evaluated. Any notifications required by 40 CRF § 257.94(e)(3) will be transmitted accordingly.

5.0 **REFERENCES**

- AECOM, October 2017. Coal Combustion Residuals Rule Groundwater Monitoring System Certification, Marion Power Plant, TBD.
- AECOM, October 2017. Coal Combustion Residuals Rule Statistical Methods Certification, Marion Power Plant, TBD.
- AECOM, September 2017. Draft Monitoring Well Installation Report Coal Combustion Residuals (CCR) Rule, Marion Power Plant, September 28, 2017.
- United States Environmental Protection Agency, 2015. Part 257.90, Sub-Part (e) Coal Combustion Residuals Rule.

Tables

TABLE 1 SOUTHERN ILLINOIS POWER COOPERATIVE MARION POWER PLANT EMERY POND IMPOUNDMENT MONITORING WELL CONSTRUCTION SUMMARY

Well ID	Easting ¹	Northing ¹	Well Installation Date	TOC Elevation (ft MSL) ¹	Ground Surface Elevation (ft MSL) ¹	Stickup Height	Total Depth (ft bgs)	Total Depth (ft BTOC)	Bottom Elevation (ft MSL)	Screen Length (feet)	Top of Screen (ft bgs)	Top of Screen (feet BTOC)	Bottom of Screen (ft bgs)	Bottom of Screen (ft BTOC)	Top of Screen Elevation (ft MSL)	Bottom of Screen Elevation (ft MSL)	Well Casing Material	Well Screen Material and Slot Size	Groundwater Flow Location	Program Use
EP-1	804661.174	347042.306	2/7/2017	519.72	517.07	2.65	31.00	33.65	486.07	10	21	23.65	31	33.65	496.07	486.07			Downgradient	
EP-2	804799.408	347113.029	2/7/2017	513.79	511.15	2.64	15.00	17.64	496.15	10	5	7.64	15	17.64	506.15	496.15	2-inch	2-inch	Downgradient	
EP-3	804814.534	347245.080	2/7/2017	518.95	516.24	2.71	26.50	29.21	489.74	10	16.5	19.21	26.5	29.21	499.74	489.74	Schedule 40	Schedule 40 PVC and 0.01-	Downgradient	Detection
EP-4	804687.527	3472883297	2/8/2017	519.74	517.07	2.67	18.50	21.17	498.57	10	8.5	11.17	18.5	21.17	508.57	498.57	PVC	inch slot	Downgradient	
EBG	804168.155	346358.140	2/8/2017	524.87	521.74	3.13	25.00	28.13	496.74	10	15	18.13	25	28.13	506.74	496.74			Background/Upgradient	

TOC - Top of Casing ft MSL - feet above Mean Sea Level ft BTOC - feet below top of casing ft bgs - feet below ground surface PVC - Polyvinyl Chloride ¹ - Easting/Northing and Elevation data provided by SIPC using the SIPC Control Network Horizontal and Vertical Datum as established by Clarida & Ziegler Engineering Co.

Table 2 Southern Illinois Power Cooperative Marion Power Plant Analytical Data

					Appe	endix III Constituen	nts										Ap	pendix IV Constituen	ts							
Analtyte	Name		Boron	Calcium	n Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226*	Radium 228*	Radium
uni	ts		mg/L	mg/L	mg/L	mg/L	S.U.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	pCi/L	pCi/L
		3/23/17	0.1300	220.0	54.0	0.5 U	6.94	820	2000	0.00043	J 0.0050 U	0.0450	0.0002	U 0.0050 U	0.005 U	0.0017 J	0.5 U	0.0050 U	0.0240 J	0.00020 U	0.00280 J	0.0012 J	0.02500 U	0.6030	0.0552	0.658
		4/24/17	0.2100	280.0	54.0	0.5 U	6.89	910	2300	H1 0.0002	U 0.0050 U	0.0400	0.0002	U 0.0060	0.005 U	0.0008 j	0.5 U	0.0050 U	0.0280 J	0.00020 U	0.00160 J	0.0014 J	0.02500 U	NA	NA	NA
		5/25/17	0.2800	310.0	48.0	0.5 U	6.55	850	2300	0.005	U 0.0050 U	0.0410	0.0050	U 0.0100 U	0.010 U	0.0050 U	0.5 U	0.0100 U	0.1000 U	0.00020 U	0.00500 U	0.0050 U	NA	NA	NA	NA
	FP-01	6/22/17	0.2600	310.0	50.0	0.5 U	6.52	850	2300	0.00057	J 0.0050 U	0.0320	0.0002	U 0.0100 U	0.010 U	0.0008 J	0.5 U	0.0100 U	0.0320 J	0.00020 U	0.00077 J	0.0050 J	NA	0.313	0.496	0.809
	LI-UI	6/29/17	0.3200	310.0	50.0	0.5 U	6.64	440	2200	0.0010	J 0.0050 U	0.0330	0.0002	U 0.0100 U	0.010 U	0.0006 J	0.5 U	0.0100 U	0.0290 J	0.00020 U	0.00180 J	0.0025 J	NA	0.1390 U	0.0387 U	0.178 U
		7/24/17	0.2100	270.0	51.0	0.5 U	6.57	540	2200	0.0050	U 0.0050 U	0.0290	0.0050	U 0.0100 U	0.010 U	0.0050 U	0.5 U	0.0100 U	0.1000 U	0.00020 U	0.00500 U	0.0050 U	NA	0.1600	-0.27	-0.110
		8/1/17	0.2300	250.0	48.0	0.5 U	6.82	520	2100	0.0002	U 0.0050 U	0.0280	0.0002	U 0.0100 U	0.010 U	0.0007 J	0.5 U	0.0100 U	0.0240 J	0.00020 U		0.0011 J	NA	0.3800	1.04	1.420
		8/31/17	0.1700	240.0	48.0	0.5 U	6.79	440	2100	0.0050	u 0.0050 U	0.0260	0.0050	U 0.0100 U	0.010 U	0.0050 U	0.5 U	0.0100 U	0.1000 U	0.00020 U	0.00500 U	0.0050 U	NA	0.2400	1.15	1.390
		3/23/17	0.2200	190.0	42.0	0.5 U	6.18	860	1800	0.00029	J 0.0050 U	0.0390	0.0002	U 0.0050 U	0.0050 U	0.0520	0.5 U	0.0050 U	0.0180 J	0.00020 U	0.00150 J	0.0038 J	0.02500 U	0.1870 U	0.8530	1.040 U
		4/24/17	0.1900	170.0	39.0	0.5 U	6.39	660	1800	H1 0.0002	U 0.0050 U	0.0350	0.0002	U 0.0050 U	0.005 U	0.0290	0.5 U	0.0050 U	0.0150 J	0.00020 U	0.00170 J	0.0027 J	0.02500 U	NA	NA	NA
		5/25/17	0.2000	200.0	36.0	0.5 U	6.31	780	1900	0.0000	U 0.0050 U	0.0380	0.0050	U 0.0100 U	0.010 U	0.0200	0.5 U	0.0100 U	0.1000 U	0.00020 U		0.0050 U	0.05000 U	NA	NA	NA
	EP-02	6/22/17	0.2300	200.0	37.0	0.5 U	6.10	780	1800	0.0004	J 0.0050 U	0.0300	0.0002	U 0.0100 U	0.010 U	0.0160	0.5 U	0.0100 U	0.0200 JU	0.00020 U	0.00030 J	0.0074	0.05000 U	0.1970	-0.127 U	0.070 U
		6/29/17	0.2900	470.0	36.0	0.5 U	5.75	470	1900	0.0007	J 0.0050 U	0.0290	0.0002	U 0.0100 U	0.010 U	0.0087	0.5 U	0.0100 U	0.0250 J	0.00020 U		0.0061	0.05000 U	1.9000	0.458 U	2.358 U
		7/24/17	0.2600	200.0	36.0	0.5 U	5.86	430	1800	0.0050	U 0.0050 U	0.0250	0.0050	U 0.0100 U	0.010 U	0.0050 U	0.5 U	0.0100 U	0.1000 U	0.00020 U		0.0054	0.05000 U	0.0800	0.4	0.480
		8/1/17	0.3100	190.0	36.0	0.5 U	5.88	770	1800	0.0002	U 0.0050 U	0.0250	0.0002	U 0.0100 U	0.010 U	0.0009 J	0.5 U	0.0100 U	0.0210 J	0.00020 U	0.00082 J	0.0046 J	0.05000 U	0.1400	1.35	1.490
Downgradient Wells		8/31/17	0.2300	180.0	36.0	0.5 U	6.33	340	1800	0.0050	U 0.0050 U	0.0250	0.0050	U 0.0100 U	0.010 U	0.0050 U	0.5 U	0.0100 U	0.1000 U	0.00020 U		0.0050 U	0.05000 U	0.0800	0.64	0.720
boungradione frons		3/23/17	0.1100	34.0	100.0	0.5 U	5.99	120.0	680	0.00022	J 0.0050 U	0.0720	0.0002	U 0.0050 U	0.005 U	0.1100	0.5 U	0.0050 U	0.0030 U	0.00020 U	0.00037 J	0.0130	0.02500 U	1.6400	0.4380 U	2.078 U
		4/24/17	0.0890	29.0	120.0	0.5 U	5.96	180.0	820	H1 0.0002	U 0.0088	0.0590	0.0002	U 0.0050 U	0.005 U	0.1200	0.5 U	0.0056 U	0.0095 J	0.00020 U		0.0110	0.02500 U	NA	NA	NA
		5/25/17	0.0810	45.0	140.0	0.5 U	6.03	190	1400	0.0050	U 0.0076	0.0590	0.0050	U 0.0100 U	0.010 U	0.0910	0.5 U	0.0100 U	0.1000 U	0.00020 U		0.0160	0.05000 U	NA	NA	NA
	EP-03	6/22/17	0.0570	93.0	220.0	0.5 U	6.08	300	560	0.0003	J 0.0061	0.0610	0.0002	U 0.0100 U	0.010 U	0.0370	0.5 U	0.0100 U	0.1200	0.00020 U		0.0280	0.05000 U	0.3550	0.420	0.775 U
		6/29/17	0.0850	30.0	66.0	0.5 U	6.01	73	570	0.0009	J 0.0050 U	0.0650	0.0002	U 0.0100 U	0.010 U	0.1100	0.5 U	0.0100 U	0.0120 J	0.00020 U		0.0130	0.05000 U	0.3170	0.397 U	0.714 U
		7/24/17	0.0830	32.0	110.0	0.5 U	5.96	130	720	0.0050	U 0.0093	0.0640	0.0050	U 0.0100 U	0.010 U	0.1200	0.5 U	0.0100 U	0.1000 U	0.00020 U		0.0160	0.05000 U	0.1900	0.770	0.960
		8/1/17	0.0900	34.0	120.0	0.5 U	6.02	140	630 1000	0.0002	U 0.0062	0.0570	0.0002	U 0.0100 U	0.010 U	0.1000	0.5 U	0.0100 U	0.0280 j	0.00020 U		0.0120	0.05000 U	0.4600	2.420	2.880
		8/31/17	0.0900	33.0	110.0	0.5 U	6.13	110		0.0050	U 0.0069	0.0580	0.0050	U 0.0100 U	0.010 U	0.1100	0.5 U	0.0100 U	0.1000 U	0.00020 U		0.0220	0.05000 U	0.4100	0.770	1.180
		3/23/17	15.0	D 190.0	460.0	0.5 U	5.51	620	2300	0.00028	J 0.0350	0.0350	0.0002	U 0.0050 U		0.3900	0.5 U	0.0090	0.0044 J	0.00020 U		0.1300	0.02500 U	1.100	0.442 U	1.542 U
		4/24/17	23.0	D 170.0	290.0 380.0	0.5 U	5.88	530	2300 2400	0.0002	U 0.0390	0.0260	0.0002	U 0.0052	0.0050 U	0.4100	0.5 U	0.0130	0.0062 J	0.00020 U		0.1200	0.06500	NA	NA	NA
		5/25/17 6/22/17	14.0	D 170.0		0.5 U	5.77	660		0.0050	0 0.0370	0.0280	0.0050	U 0.0100 U	0.010 U	0.4100	0.5 U	0.0110	0.1000 U	0.00020 U		0.1300	0.09200			NA 1.077
	EP-04		11.0	D 150.0 D 190.0	430.0 250.0	0.5 U	5.80	730	2000 2100	0.0003	J 0.0530	0.0290	0.0002	U 0.0100 U	0.010 U	0.4400	0.5 U	0.0170	0.0047 J	0.00020 U		0.2000	0.09400	0.180	0.897	1.077
		6/29/17 7/24/17	13.0		180.0	0.5 U 0.5 U	5.81	410 290	2300	0.0005	J 0.0440	0.0370	0.0002	U 0.0100 U U 0.0100 U	0.010 U 0.010 U	0.3400	0.5 U 0.5 U	0.0100 U 0.0110	0.0063 J 0.1000 U	0.00020 U 0.00020 U		0.1300	0.05800	0.219 U 0.300	0.490 U 0.440	0.709 U 0.740
		8/1/17	11.0	D 160.0 D 150.0	210.0	0.5 U	5.80	330	2300	0.0050	U 0.0350	0.0260	0.0002	U 0.0100 U	0.010 U	0.4100	0.5 U	0.0120	0.0053 J	0.00020 U		0.1300	0.07500	0.300	0.440	1.110
		8/31/17	14.0	D 150.0	210.0	0.5 U	5.85	340	2200	0.0050	0 0.0350	0.0230	0.0050	U 0.0100 U	0.010 U	0.3800	0.5 U	0.0120	0.1000 U	0.00020 U	0.00.00	0.1600	0.07500	0.330	2.140	2.470
		3/23/17	0.1200	23.0	55.0	0.5 U	6.50	64	480	0.00057	0.0490	0.1300	0.00033	J 0.0050 U	0.010 U	0.0080	0.5 U	0.0050 U	0.0046 J	0.00020 U	0.00300 U	0.0019 J	0.02500 U	0.878	1.060	1.938
		4/24/17	0.0790	10.0	11.0	0.5 U	6.80	54	480	H1 0.00085	J 0.0050 U	0.0290	0.0002	U 0.0050 U	0.005 U	0.0002 J	0.5 U	0.0050 U	0.0074 J	0.00020 U	0.00430 J	0.0005 U	0.02500 U	NA	NA	NA
		5/25/17	0.1000	30.0	84.0	0.5 U	6.41	42	400	0.0050	U 0.0050 U	0.1700	0.0050	U 0.0100 U	0.003 U	0.0140	0.5 U	0.0100 U	0.1000 U	0.00020 U		0.0005 U	0.05000 U	NA	NA	NA
		6/22/17	0.0710	23.0	68.0	0.5 U	6.45	42	440	0.00069	J 0.0050 U	0.0490	0.0002	U 0.0100 U	0.010 U	0.0002	0.5 U	0.0100 U	0.0280 J	0.00020 U	0.00170 J	0.0036 J	0.05000 U	0.262 U	0.0695 U	0.332 U
Upgradient Wells	EBG	6/29/17	0.0710	32.0	79.0	0.5 U	6.53	50	280	0.0014	J 0.0050 U	0.0860	0.0002	U 0.0100 U	0.010 U	0.0014 J	0.5 U	0.0100 U	0.0590 J	0.00020 U	0.00160 J	0.0019 J	0.05000 U	0.245 U	0.371 U	0.616 U
		7/24/17	0.0730	37.0	27.0 M2	0.64 M1	6.59	÷ •	M2 420	0.0050	U 0.0050 U	0.1900	0.0050	U 0.0100 U	0.010 U	0.0093	0.64 M1	0.0100 U	0.1000 U	0.00020 U	0.00500 U	0.0019 J	0.05000 U	0.430	0.980	1.410
		8/1/17	0.0740		M3 86.0	0.5 U	6.66	45	380	0.00022	J 0.0050 U	0.1800	0.0002	U 0.0100 U	0.010 U	0.0038 J	0.5 U	0.0100 U	0.0820 J	0.00020 U	0.00240 J	0.0028 J	0.05000 U	0.280	1.240	1.520
		8/31/17	0.0560	35.0	82.0	0.5 U	6.26	44	470	0.0050	U 0.0050 U	0.1600	0.0050	U 0.0100 U	0.010 U	0.0073	0.5 U	0.0100 U	0.1000 U	0.00020 U		0.0070	0.05000 U	0.770	2.220	2.990
Upper	Limit	5/ 0 // //	0.1210	46.3	118.1	0.640	6.85	68.6	550	0.0000	0.0000 0	5.1000	0.0000	0.0100 0	3.010 0	0.0075	0.0	I Evaluation is Not Ap		0.00020 0	0.00000 0	0.0070	0.00000 0	0.770	2.220	2.770
opper			0.1210	40.3	110.1	0.040	0.03	00.0	330								5101131166	a craidation is not Ap	Piloabio							

Statistically significant increase (SSI) over baseline sampling using well specific and parameter specific statistical limits. TDS = Total Dissolved Solids NA = Not Analyzed mg/L = milligrams per liter S.U. = Standard Units pCi/L = picoCurie/liter D = Dilution J = The analyte was positively identified, but the quanitation was below the RL. U = Analyte analyzed for but not detected * "U" flag for radionuclides is not detected above the minimum detectable concentration which differs from similar flag for aqueous results. M1 = Matrix Spike recovery outside Control Limits due to sample matrix interference; biased high. M2 = Matrix Spike recovery outside Control Limits due to sample matrix interference; biased low M3 = Analyte in the parent sample for the Matrix Spike was -4x the concentration of the spike solution which renders the spike amount insignificant. Matrix spike recoveries do not impact the quality of the parent sample data for this analyte. H1 = Sample received outside of holding time for these analyses

TABLE 3 SOUTHERN ILLINOIS POWER COOPERATIVE MARION POWER PLANT MONITORING WELL GROUNDWATER ELEVATIONS

		Eve	nt 1	Eve	nt 2	Eve	nt 3	Eve	ent 4
	Date	3/24/	3/24/2017		2017	5/25/	2017	6/22/2017	
			Groundw ater		Groundw ater		Groundwater		Groundwater
	TOC Elevation		Elevation		Elevation		Elevation		Elevation
Well	(feet, msl)	DTW (feet)	(feet, msl)	DTW (feet)	(feet, msl)	DTW (feet)	(feet, msl)	DTW (feet)	(feet, msl)
EGB	524.87	5.20	519.67	7.90	516.97	8.00	516.87	8.00	516.87
EP-1	519.72	7.30	512.42	5.80	513.92	7.00	512.72	8.00	511.72
EP-2	513.79	4.90	508.89	3.90	509.89	4.50	509.29	5.10	508.69
EP-3	518.95	12.40	506.55	13.10	505.85	13.30	505.65	13.00	505.95
EP-4	519.74	10.00	509.74	10.00	509.74	10.20	509.54	9.90	509.84

TOC = Top of casing DTW = Depth to water

TABLE 3 SOUTHERN ILLINOIS POWER COOPERATIVE MARION POWER PLANT MONITORING WELL GROUNDWATER ELEVATIONS

		Eve	nt 5	Eve	ent 6	Eve	ent 7	Eve	ent 8
	Date	6/29/2017		7/24/	2017	8/3/2	2017	8/31/2017	
			Groundwater		Groundwater		Groundwater		Groundwater
	TOC Elevation		Elevation		Elevation		Elevation		Elevation
Well	(feet, msl)	DTW (feet)	(feet, msl)	DTW (feet)	(feet, msl)	DTW (feet)	(feet, msl)	DTW (feet)	(feet, msl)
EGB	524.87	13.00	511.87	8.00	516.87	9.60	515.27	8.90	515.97
EP-1	519.72	8.20	511.52	9.00	510.72	10.30	509.42	10.90	508.82
EP-2	513.79	5.00	508.79	6.00	507.79	6.40	507.39	6.80	506.99
EP-3	518.95	13.30	505.65	11.50	507.45	12.70	506.25	11.50	507.45
EP-4	519.74	7.20	512.54	10.00	509.74	9.50	510.24	9.90	509.84

TOC = Top of casing DTW = Depth to water

Table 4 Southern Illinois Power Cooperative Marion Power Plant Groundwater Flow Rates

	Event	Groundwater Flow Direction	Hydraulic Conductivity (cm/sec)	Gradient (dh/dl)	DTW (upgradient)	DTW (downgradient)	Difference b/w head (ft)	Effective Porosity	Length (ft)	Max velocity (cm/sec)	Max velocity (ft/day)
	1			0.024	512.42	508.89	3.53			9.41E-07	2.67E-03
	2	Northeast		0.027	513.92	509.89	4.03	40%	150	1.07E-06	3.05E-03
	3	Nonneasi		0.023	512.72	509.29	3.43			9.15E-07	2.59E-03
Flow Path from	4		1.60E-05	0.020	511.72	508.69	3.03			8.08E-07	2.29E-03
EP-1 to EP-2	5		1.002 00	0.018	511.52	508.79	2.73	4070	150	7.28E-07	2.06E-03
	6	East		0.020	510.72	507.79	2.93			7.81E-07	2.21E-03
	7			0.014	509.42	507.39	2.03			5.41E-07	1.53E-03
	8			0.012	508.82	506.99	1.83			4.88E-07	1.38E-03

cm/sec = Centimeters per second

References:

Holcomb Foundation Engineering Co., February 2017. Southern Illinois Power Cooperative Slug Tests. Marion Power Plant, February 10, 2017. Fetter, C.W., 2001. Applied Hydrogeology: Fourth Edition, Prentice-Hall, Inc.

	Porosity (%)
^(a) Silt	35 - 50%
^(b) Clay	33 - 60%

Figures

Α

AECOM 1001 Highlands Plaza Drive West, Suite 300 St. Louis, Mo. 63110-1337 314 429-0100 (phone) 314 429-0462 (fax)

SOUTHERN ILLINOIS

POWER COOPERATIVE

LEGEND

SOUTHERN ILLINOIS POWER COOPERATIVE 11543 Lake of Egypt Road Marion, Illinois 62959 (618) 964-1867

MARION POWER PLANT MARION, ILLINOIS

GROUNDWATER MONITORING WELLS

PRELIMINARY NOT FOR CONSTRUCTION

ISSI	JED FOR BIDDING _	DATE							
SSI	JED FOR CONSTRUCTION _	DATE							
	REVISIONS								
0.	DESCRIPTION	DATE							
\geq									
\leq									
\leq									
AEC	COM PROJECT NO:	60535846							
DR/	AWN BY:	MJC							
DES	SIGNED BY:	MJC							
CHE	ECKED BY:	SB							
DAT	E CREATED:	09/29/2017							
PLOT DATE: 10/2/2017									
SCALE: 1" = 100'									
ACAD VER: 2017									
SH	EET TITLE								
		C C DESCRIPTION D C DESCRIPTION C C C D C D C D C D C D C D C D C D C							

WELL LOCATION MAP

FIGURE 2

T

Appendix A

Monitoring Well Construction Logs

Log of EBG

Sheet 1 of 1

Date(s) Drilled and Installed	2/8/2017	Logged By	Suzanne Dale	Reviewed By	
Drilling Method	Hollow Stem Auger	Drilling Contractor	Holcomb Engineering	Total Depth of Borehole	25.0 feet, bgs
Sampling Method	Split Spoon	Water Level TOIC	Not measured	TOC Elevation Ground Surface	524.87 ft, msl 521.74 ft, msl
Size and Type of Well Casing	2-Inch Schedule 40 PVC	Screen Perforation	0.010 - inch	Northing (Plant) Easting (Plant)	346358.14 ft 804168.155 ft
Seal or Backfill	Bentonite Chips				

Log of EP-1

Sheet 1 of 1

Date(s) Drilled and Installed	2/7/2017	Logged By	Suzanne Dale	Reviewed By	
Drilling Method	Hollow Stem Auger	Drilling Contractor	Holcomb Engineering	Total Depth of Borehole	31.0 feet, bgs
Sampling Method	Split Spoon	Water Level TOIC	Not measured	TOC Elevation Ground Surface	519.72 ft, msl 517.07 ft, msl
Size and Type of Well Casing	2-Inch Schedule 40 PVC	Screen Perforation	0.010 - inch	Northing (Plant) Easting (Plant)	347042.306 ft 804661.174 ft
Seal or Backfill	Bentonite Chips				

Log of EP-2 Sheet 1 of 1

Date(s) Drilled and Installed	2/7/2017	Logged By	Suzanne Dale	Reviewed By	
Drilling Method	Hollow Stem Auger	Drilling Contractor	Holcomb Engineering	Total Depth of Borehole	15.0 feet, bgs
Sampling Method	Split Spoon	Water Level TOIC	Not measured	TOC Elevation Ground Surface	513.79 ft, msl 511.15 ft, msl
Size and Type of Well Casing	2-Inch Schedule 40 PVC	Screen Perforation	0.010 - inch	Northing (Plant) Easting (Plant)	347113.029 ft 804799.408 ft
Seal or Backfill	Bentonite Chips				

		SAM	PLES		0		W	VELL CONSTRUCTIO
Elevation, feet msl	Depth, feet bgs	Sample Interval	% Recovery	USCS Code	USCS Graphic Symbol	MATERIAL DESCRIPTION		Riser with protective casing and locking cap
	0		NR	Fill		Asphalt and GRAVEL (FILL)		Concrete
-510	-	\mathbf{X}	NR	CL		Brown to tan silty CLAY, medium stiff, moist (CL) brown to tan silty CLAY, soft to medium, medium to high plasticity, moist (CL)		Concrete
	- 5	\mathbf{X}	NR			medium plasticity, with rust color oxidation, trace sand and gravel		2.0" diameter SC 40 PVC Riser
	-	\square	NR	CL				
-500	- 10	\square	NR					Filter Sand 2.0" diameter SC 40 PVC, 0.010" Slotted Screen
	-	$\left \right\rangle$	NR	ML		Tan clayey SILT, stiff, low plasticity, moist (ML) - - - SANDSTONE		
	-	\times	NR	SNDST		SANDSTONE		
	15— - -					Boring terminated at 15.0 ft. bgs on 2/7/2017. Monitoring well installed to 15.0 ft. bgs on 2/7/2017. NR = Not Recorded	-	
-490	- 20 -						-	
	- 25 -					- - - -		
-480	- 30 -					- - -		
	35-						-	

Log of EP-3

Sheet 1 of 1

Date(s) Drilled and Installed	2/8/2017	Logged By	Suzanne Dale	Reviewed By	
Drilling Method	Hollow Stem Auger	Drilling Contractor	Holcomb Engineering	Total Depth of Borehole	26.5 feet, bgs
Sampling Method	Split Spoon	Water Level TOIC	Not measured	TOC Elevation Ground Surface	518.95 ft, msl 518.95 ft, msl
Size and Type of Well Casing	2-Inch Schedule 40 PVC	Screen Perforation	0.010 - inch	Northing (Plant) Easting (Plant)	347245.08 ft 804814.534 ft
Seal or Backfill	Bentonite Chips				

Log of EP-4

Sheet 1 of 1

Date(s) Drilled and Installed	2/8/2017	Logged By	Suzanne Dale	Reviewed By	
Drilling Method	Hollow Stem Auger	Drilling Contractor	Holcomb Engineering	Total Depth of Borehole	18.5 feet, bgs
Sampling Method	Split Spoon	Water Level TOIC	Not measured	TOC Elevation Ground Surface	519.74 ft, msl 517.07 ft, msl
Size and Type of Well Casing	2-Inch Schedule 40 PVC	Screen Perforation	0.010 - inch	Northing (Plant) Easting (Plant)	347288.297 ft 804687.527 ft
Seal or Backfill	Bentonite Chips				

Appendix B

Groundwater Flow Maps

Groundwater Monitoring Well

- - ; ---- Solid

→ Inferred Direction of Groundwater Flow

	MARION PO	MARION POWER PLANT				
N	APPEN EVE EMORY POND PO	NT 1 DTENTIOMETRIC				
SURFACE MAP MARCH 24, 2017						
Ĭ I	DATE: 1/22/2018	1 inch = 200 feet				
	CREATED BY: TA	CHECKED BY: DPC				
	JOB NO. 60535846					

- + Groundwater Monitoring Well
- Groundwater Contour (ft,msl)
- - Inferred Groundwater Contour (ft,msl)
- → Inferred Direction of Groundwater Flow

	MARION PO	WER PLANT				
N	APPEN					
Ň	EVENT 2 EMORY POND POTENTIOMETRIC					
	APRIL 24, 2017					
٦ I	DATE: 1/22/2018	1 inch = 200 feet				
	CREATED BY: TA	CHECKED BY: DPC				
	JOB NO. 60535846					

- + Groundwater Monitoring Well
- Groundwater Contour (ft,msl)
- - Inferred Groundwater Contour (ft,msl)
- → Inferred Direction of Groundwater Flow

	MARION PO	MARION POWER PLANT				
N	APPENDIX B EVENT 3					
		EMORY POND POTENTIOMETRIC SURFACE MAP MAY 25, 2017				
Ĭ	DATE: 1/22/2018	1 inch = 200 feet				
	CREATED BY: TA	CHECKED BY: DPC				
	JOB NO. 60535846					

- Groundwater Monitoring Well
- Groundwater Contour (ft,msl)
- - Inferred Groundwater Contour (ft,msl)
- → Inferred Direction of Groundwater Flow

	MARION PO	MARION POWER PLANT				
N	APPENDIX B EVENT 4					
		EMORY POND POTENTIOMETRIC SURFACE MAP JUNE 22, 2017				
Ĭ	DATE: 1/22/2018	1 inch = 200 feet				
	CREATED BY: TA	CHECKED BY: DPC				
	JOB NO. 60535846					

- + Groundwater Monitoring Well
- Groundwater Contour (ft,msl)
- - Inferred Groundwater Contour (ft,msl)
- → Inferred Direction of Groundwater Flow

	MARION PO	MARION POWER PLANT				
N	APPENDIX B EVENT 5					
À	EMORY POND PO SURFACE MAP	DTENTIOMETRIC				
T	DATE: 1/22/2018	1 inch = 200 feet				
	CREATED BY: TA	CHECKED BY: DPC				
	JOB NO. 60535846					

- + Groundwater Monitoring Well
- Groundwater Contour (ft,msl)
- - Inferred Groundwater Contour (ft,msl)
- → Inferred Direction of Groundwater Flow

	MARION PO	WER PLANT				
N	APPEN					
	EVENT 6					
	EMORY POND PO SURFACE MAF					
7	DATE: 1/22/2018	1 inch = 200 feet				
	CREATED BY: TA	CHECKED BY: DPC				
	JOB NO. 60535846					

- + Groundwater Monitoring Well
- Groundwater Contour (ft,msl)
- - Inferred Groundwater Contour (ft,msl)
- → Inferred Direction of Groundwater Flow

	MARION PO	WER PLANT				
N	APPEN					
Ň	EVENT 7 EMORY POND POTENTIOMETRIC					
	SURFACE MAP AUGUST 3, 2017					
۲I	DATE: 1/22/2018	1 inch = 200 feet				
	CREATED BY: TA	CHECKED BY: DPC				
	JOB NO. 60535846					

- + Groundwater Monitoring Well
- Groundwater Contour (ft,msl)
- - Inferred Groundwater Contour (ft,msl)
- → Inferred Direction of Groundwater Flow

	MARION POWER PLANT	
N	APPENDIX B EVENT 8 EMORY POND POTENTIOMETRIC SURFACE MAP AUGUST 31, 2017	
	DATE: 1/22/2018	1 inch = 200 feet
	CREATED BY: TA	CHECKED BY: DPC
	JOB NO. 60535846	